Spin in the path integral : anti - commuting versus commuting variables

نویسندگان

  • F G Scholtz
  • A N Theron
  • H B Geyer
چکیده

We discuss the equivalence between the path integral representations of spin dynamics for anti-commuting (Grassmann) and commuting variables and establish a bosonization dictionary for both generators of spin and single fermion operators. The content of this construction in terms of the representations of the spin algebra is discussed in the path integral setting. Finally it is shown how a 'free field realization' (Dyson mapping) can be constructed in the path integral.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Path Integrals with Generalized Grassmann Variables

We construct path integral representations for the evolution operator of q-oscillators with root of unity values of q-parameter using BargmannFock representations with commuting and non-commuting variables, the differential calculi being q-deformed in both cases. For q = −1 we obtain a new form of Grassmann-like path integral. on leave of absence from Nuclear Physics Institute, Moscow State Uni...

متن کامل

Integrability of quantum chains: theory and applications to the spin-1/2 XXZ chain

In this contribution we review the theory of integrability of quantum systems in one spatial dimension. We introduce the basic concepts such as the Yang-Baxter equation, commuting currents, and the algebraic Bethe ansatz. Quite extensively we present the treatment of integrable quantum systems at finite temperature on the basis of a lattice path integral formulation and a suitable transfer matr...

متن کامل

The QCD Abacus: A Cellular Automata Formulation for Continuous Gauge Symmetries

This talk will explain a new way to formulate statistical (or quantum eld) theories entirely in terms discrete quantum spins. Remarkably even theories with continuous symmetries such as 3-d rotations can be exactly represented in such a discrete (or binary) "computational" framework. A new application of this idea to Quantum Chromodynamics (QCD), the fundamental gauge theory for nuclear forces,...

متن کامل

Evaluating Grassmann Integrals

I discuss a simple numerical algorithm for the direct evaluation of multiple Grassmann integrals. The approach is exact, suffers no Fermion sign problems, and allows arbitrarily complicated interactions. Memory requirements grow exponentially with the interaction range and the transverse size of the system. Low dimensional systems of order a thousand Grassmann variables can be evaluated on a wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994